Journal of Cardiovascular Magnetic Resonance

Poster presentation

Open Access

Non-selective double inversion recovery pre-pulse for flow-independent black blood myocardial viability imaging

Sarah A Peel*, Christian Jansen, Nicolas Toussaint, Tobias Schaeffter and René M Botnar

Address: King's College London, London, UK

* Corresponding author

from 13th Annual SCMR Scientific Sessions Phoenix, AZ, USA. 21-24 January 2010

Published: 21 January 2010

Journal of Cardiovascular Magnetic Resonance 2010, 12(Suppl 1):P104 doi:10.1186/1532-429X-12-S1-P104

This abstract is available from: http://jcmr-online.com/content/12/S1/P104 © 2010 Peel et al; licensee BioMed Central Ltd.

Introduction

MRI late gadolinium enhancement (LGE) using the inversion-recovery (IR) sequence is the current gold standard for assessing myocardial viability. Although it achieves high contrast between infarct and normal myocardium, there is often poor infarct-to-blood contrast. Flow-dependent and diffusion-prepared black-blood LGE techniques have previously been described. [12] [1,2] Recently a quadruple-inversion recovery pre-pulse was introduced for T₁-independent flow suppression in carotid plaque imaging [3]. We introduced a modification to this pre-pulse aiming to achieve flow-independent signal suppression over a wide user-defined T₁-range and to improve sub-endocardial infarct detection in LGE myocardial viability imaging.

Methods

NS-DIR pre-pulse

A non-selective double-inversion recovery (NS-DIR) sequence with two time delays, TI_1 and TI_2 , was implemented on a 3 T Philips Achieva MR-scanner (Philips-Healthcare, Best, NL). TI_1 and TI_2 were optimized in MAT-LAB simulations by minimizing M_Z NS-DIR over several user-defined T_1 -ranges for a given heart rate.

Phantom experiments

A T_1 -phantom containing 11 T_1 -samples (T_1 -range = 120 ms-1730 ms) was imaged with the NS-DIR pre-pulse using optimized TI_1 and TI_2 times. The signal-to-noise ratio (SNR) was calculated for each sample.

Patient Study

A 78-year-old man with previous myocardial infarctions was imaged with a 32-channel coil \sim 15 minutes after injection of 0.12 mmol/kg Gd-DOTA (Gadovist). Firstly a breath-hold 2D IR segmented gradient-echo (TFE) sequence was acquired in standard views. Imaging parameters included: spatial-resolution = $1.54 \times 1.75 \times 8$ mm, TR/TE = 3.8 ms/2 ms, FA = 25° , TFE-factor = 25 and TI = 350 ms(chosen using LookLocker sequence).

Subsequently, identical planes were repeated with the IR replaced by the NS-DIR pre-pulse with imaging parameters maintained. $TI_1 = 411$ ms and $TI_2 = 156$ ms were used (optimized to minimize M_Z^{NS-DIR} for T_1 -range = 300-1400 ms, heart rate = 70 bpm).

Results

Simulations & Phantom experiments

 M_Z NS-DIR simulations (Fig. 1a) indicate excellent signal suppression over the desired T_1 -range for all heart rates with corresponding phantom studies in good agreement (Fig. 1b).

Patient Study

NS-DIR images demonstrate excellent signal suppression of blood and normal myocardium (Fig. 2a) while conventional IR-TFE images (Fig. 2b) display similar infarct and blood signal. Whilst both techniques demonstrate transmural anterior and inferior wall infarcts, the NS-DIR image depicts an apical, non-transmural sub-endocardial

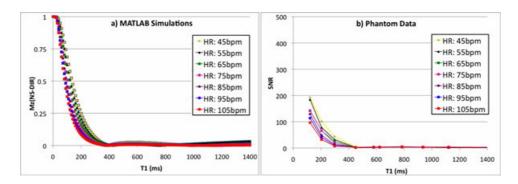


Figure I
a) Simulated M_z NS-DIR curves for TI₁ and TI₂ values optimized to minime M_z NS-DIR for T₁ values between 300 and 1400 ms for difference heart rates. Figure 1b) The corresponding SNR values measured in phantom images using the same TI₁ and TI₂ settings and heart-rates are in good agreement with the simulations.

defect, which is difficult to distinguish from blood in the IR image.

Conclusion

We have developed a new flow-independent LGE sequence for improved contrast visualization. Simulations and phantom studies demonstrate excellent tissue suppression over a wide T₁-range. Preliminary patient data suggests improved visualization of small sub-endocardial defects. Further studies are warranted to investigate the clinical usefulness of this novel approach.

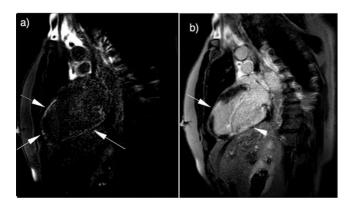


Figure 2
A 78-year-old man with previous myocardial infarctions was imaged using a) the NS-DIR pre-pulse and b) the standard IR sequence. Arrows indicate transmural infarcts in the anterior and inferior walls and a non-transmural apical infarct which is better visualized with the NS-DIR pre-pulse.

References

- I. Salerno M, et al.: Proc ISMRM 2007, 15:3582.
- 2. Salerno M, et al.: JCMR 2009, 11:8.
- Yarnykh VL, et al.: MRM 2002, 48(5):899-905.